Internal
problem
ID
[16341]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
4.
SEPARABLE
FIRST
ORDER
EQUATIONS.
Additional
exercises.
page
90
Problem
number
:
4.5
(d)
Date
solved
:
Thursday, October 02, 2025 at 01:21:09 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
With initial conditions
ode:=y(x)*diff(y(x),x) = 3*(x*y(x)^2+9*x)^(1/2); ic:=[y(1) = 4]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=y[x]*D[y[x],x]==3*Sqrt[x*y[x]^2+9*x]; ic={y[1]==4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*sqrt(x*y(x)**2 + 9*x) + y(x)*Derivative(y(x), x),0) ics = {y(1): 4} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : Initial conditions produced too many solutions for constants