67.3.35 problem 4.7 (i)

Internal problem ID [16356]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 4. SEPARABLE FIRST ORDER EQUATIONS. Additional exercises. page 90
Problem number : 4.7 (i)
Date solved : Thursday, October 02, 2025 at 01:22:24 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&={\mathrm e}^{-y} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 8
ode:=diff(y(x),x) = exp(-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \ln \left (x +c_1 \right ) \]
Mathematica. Time used: 0.14 (sec). Leaf size: 10
ode=D[y[x],x]==Exp[-y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \log (x+c_1) \end{align*}
Sympy. Time used: 0.089 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - exp(-y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \log {\left (C_{1} + x \right )} \]