67.4.7 problem 5.1 (g)

Internal problem ID [16376]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 5. LINEAR FIRST ORDER EQUATIONS. Additional exercises. page 103
Problem number : 5.1 (g)
Date solved : Thursday, October 02, 2025 at 01:26:52 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }-{\mathrm e}^{2 x}&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x)-exp(2*x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{2 x}}{2}+c_1 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 17
ode=D[y[x],x]-Exp[2*x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{2 x}}{2}+c_1 \end{align*}
Sympy. Time used: 0.066 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(2*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {e^{2 x}}{2} \]