Internal
problem
ID
[16385]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
5.
LINEAR
FIRST
ORDER
EQUATIONS.
Additional
exercises.
page
103
Problem
number
:
5.2
(f)
Date
solved
:
Thursday, October 02, 2025 at 01:27:21 PM
CAS
classification
:
[_linear]
ode:=x^2*diff(y(x),x)+2*x*y(x) = sin(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]+2*x*y[x]==Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + 2*x*y(x) - sin(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)