Internal
problem
ID
[16394]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
5.
LINEAR
FIRST
ORDER
EQUATIONS.
Additional
exercises.
page
103
Problem
number
:
5.3
(e)
Date
solved
:
Thursday, October 02, 2025 at 01:27:35 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=x*diff(y(x),x) = y(x)+x^2*cos(x); ic:=[y(1/2*Pi) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x*D[y[x],x]==y[x]+x^2*Cos[x]; ic={y[Pi/2]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*cos(x) + x*Derivative(y(x), x) - y(x),0) ics = {y(pi/2): 0} dsolve(ode,func=y(x),ics=ics)