Internal
problem
ID
[16403]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
6.
Simplifying
through
simplifiction.
Additional
exercises.
page
114
Problem
number
:
6.3
(a)
Date
solved
:
Thursday, October 02, 2025 at 01:28:34 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x^2*diff(y(x),x)-x*y(x) = y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]-x*y[x]==y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - x*y(x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)