Internal
problem
ID
[16408]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
6.
Simplifying
through
simplifiction.
Additional
exercises.
page
114
Problem
number
:
6.5
(b)
Date
solved
:
Thursday, October 02, 2025 at 01:28:56 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=diff(y(x),x)-3*y(x)/x = y(x)^2/x^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-3*y[x]/x==(y[x]/x)^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - 3*y(x)/x - y(x)**2/x**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)