67.5.13 problem 6.7 (a)

Internal problem ID [16411]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 6. Simplifying through simplifiction. Additional exercises. page 114
Problem number : 6.7 (a)
Date solved : Thursday, October 02, 2025 at 01:29:05 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} y^{\prime }&=\frac {y}{x}+\frac {x^{2}}{y^{2}} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 58
ode:=diff(y(x),x) = y(x)/x+x^2/y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (3 \ln \left (x \right )+c_1 \right )^{{1}/{3}} x \\ y &= -\frac {\left (3 \ln \left (x \right )+c_1 \right )^{{1}/{3}} \left (1+i \sqrt {3}\right ) x}{2} \\ y &= \frac {\left (3 \ln \left (x \right )+c_1 \right )^{{1}/{3}} \left (i \sqrt {3}-1\right ) x}{2} \\ \end{align*}
Mathematica. Time used: 0.115 (sec). Leaf size: 63
ode=D[y[x],x]==y[x]/x+(x/y[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \sqrt [3]{3 \log (x)+c_1}\\ y(x)&\to -\sqrt [3]{-1} x \sqrt [3]{3 \log (x)+c_1}\\ y(x)&\to (-1)^{2/3} x \sqrt [3]{3 \log (x)+c_1} \end{align*}
Sympy. Time used: 0.560 (sec). Leaf size: 68
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2/y(x)**2 + Derivative(y(x), x) - y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt [3]{x^{3} \left (C_{1} + 3 \log {\left (x \right )}\right )}, \ y{\left (x \right )} = \frac {\sqrt [3]{x^{3} \left (C_{1} + 3 \log {\left (x \right )}\right )} \left (-1 - \sqrt {3} i\right )}{2}, \ y{\left (x \right )} = \frac {\sqrt [3]{x^{3} \left (C_{1} + 3 \log {\left (x \right )}\right )} \left (-1 + \sqrt {3} i\right )}{2}\right ] \]