Internal
problem
ID
[16422]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
6.
Simplifying
through
simplifiction.
Additional
exercises.
page
114
Problem
number
:
6.7
(L)
Date
solved
:
Thursday, October 02, 2025 at 01:31:20 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Bernoulli]
ode:=diff(y(x),x)+3*y(x) = 28*exp(2*x)/y(x)^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+3*y[x]==28*Exp[2*x]*1/(y[x]^3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*y(x) + Derivative(y(x), x) - 28*exp(2*x)/y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)