Internal
problem
ID
[16424]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
6.
Simplifying
through
simplifiction.
Additional
exercises.
page
114
Problem
number
:
6.7
(n)
Date
solved
:
Thursday, October 02, 2025 at 01:31:24 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=diff(y(x),x)+2*x = 2*(y(x)+x^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+2*x==2*Sqrt[y[x]+x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x - 2*sqrt(x**2 + y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)