Internal
problem
ID
[16426]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
6.
Simplifying
through
simplifiction.
Additional
exercises.
page
114
Problem
number
:
6.7
(p)
Date
solved
:
Thursday, October 02, 2025 at 01:31:28 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Riccati]
ode:=diff(y(x),x) = x*(1+2/x^2*y(x)+y(x)^2/x^4); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==x*(1+2*y[x]/x^2+y[x]^2/x^4); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(1 + 2*y(x)/x**2 + y(x)**2/x**4) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)