67.6.19 problem 7.5 (i)

Internal problem ID [16445]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 7. The exact form and general integrating fators. Additional exercises. page 141
Problem number : 7.5 (i)
Date solved : Thursday, October 02, 2025 at 01:33:25 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.231 (sec). Leaf size: 63
ode:=6+12*x^2*y(x)^2+(7*x^3*y(x)+x/y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (x^{10} \textit {\_Z}^{35} c_1^{2}-x^{10} \textit {\_Z}^{30} c_1^{2}-1\right )^{15} x^{4} \left (\operatorname {RootOf}\left (x^{10} \textit {\_Z}^{35} c_1^{2}-x^{10} \textit {\_Z}^{30} c_1^{2}-1\right )^{5}-1\right ) c_1 \]
Mathematica. Time used: 3.854 (sec). Leaf size: 330
ode=6+12*x^2*y[x]^2+(7*x^3*y[x]+x/y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {Root}\left [-\text {$\#$1}^7-\frac {3 \text {$\#$1}^5}{x^2}-\frac {3 \text {$\#$1}^3}{x^4}-\frac {\text {$\#$1}}{x^6}+\frac {e^{c_1}}{x^{12}}\&,1\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^7-\frac {3 \text {$\#$1}^5}{x^2}-\frac {3 \text {$\#$1}^3}{x^4}-\frac {\text {$\#$1}}{x^6}+\frac {e^{c_1}}{x^{12}}\&,2\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^7-\frac {3 \text {$\#$1}^5}{x^2}-\frac {3 \text {$\#$1}^3}{x^4}-\frac {\text {$\#$1}}{x^6}+\frac {e^{c_1}}{x^{12}}\&,3\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^7-\frac {3 \text {$\#$1}^5}{x^2}-\frac {3 \text {$\#$1}^3}{x^4}-\frac {\text {$\#$1}}{x^6}+\frac {e^{c_1}}{x^{12}}\&,4\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^7-\frac {3 \text {$\#$1}^5}{x^2}-\frac {3 \text {$\#$1}^3}{x^4}-\frac {\text {$\#$1}}{x^6}+\frac {e^{c_1}}{x^{12}}\&,5\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^7-\frac {3 \text {$\#$1}^5}{x^2}-\frac {3 \text {$\#$1}^3}{x^4}-\frac {\text {$\#$1}}{x^6}+\frac {e^{c_1}}{x^{12}}\&,6\right ]\\ y(x)&\to \text {Root}\left [-\text {$\#$1}^7-\frac {3 \text {$\#$1}^5}{x^2}-\frac {3 \text {$\#$1}^3}{x^4}-\frac {\text {$\#$1}}{x^6}+\frac {e^{c_1}}{x^{12}}\&,7\right ] \end{align*}
Sympy. Time used: 0.412 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(12*x**2*y(x)**2 + (7*x**3*y(x) + x/y(x))*Derivative(y(x), x) + 6,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ - \log {\left (x \right )} - \frac {\log {\left (x y{\left (x \right )} \right )}}{5} - \frac {3 \log {\left (x^{2} y^{2}{\left (x \right )} + 1 \right )}}{5} = C_{1} \]