Internal
problem
ID
[16522]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
13.
Higher
order
equations:
Extending
first
order
concepts.
Additional
exercises
page
259
Problem
number
:
13.5
(c)
Date
solved
:
Thursday, October 02, 2025 at 01:35:58 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]
ode:=diff(y(x),x)*diff(diff(y(x),x),x) = 1; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]*D[y[x],{x,2}]==1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x)*Derivative(y(x), (x, 2)) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)