67.8.37 problem 13.6 (c)

Internal problem ID [16532]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 13. Higher order equations: Extending first order concepts. Additional exercises page 259
Problem number : 13.6 (c)
Date solved : Thursday, October 02, 2025 at 01:36:07 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=y^{\prime } \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=8 \\ y^{\prime }\left (0\right )&=5 \\ \end{align*}
Maple. Time used: 0.042 (sec). Leaf size: 10
ode:=diff(diff(y(x),x),x) = diff(y(x),x); 
ic:=[y(0) = 8, D(y)(0) = 5]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 3+5 \,{\mathrm e}^{x} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 12
ode=D[y[x],{x,2}]==D[y[x],x]; 
ic={y[0]==8,Derivative[1][y][0] ==5}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 5 e^x+3 \end{align*}
Sympy. Time used: 0.037 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 8, Subs(Derivative(y(x), x), x, 0): 5} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 5 e^{x} + 3 \]