67.8.48 problem 13.8 (iii)

Internal problem ID [16543]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 13. Higher order equations: Extending first order concepts. Additional exercises page 259
Problem number : 13.8 (iii)
Date solved : Thursday, October 02, 2025 at 01:36:16 PM
CAS classification : [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

\begin{align*} y^{\prime \prime }&=-2 {y^{\prime }}^{2} x \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \\ y^{\prime }\left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.091 (sec). Leaf size: 11
ode:=diff(diff(y(x),x),x) = -2*x*diff(y(x),x)^2; 
ic:=[y(1) = 0, D(y)(1) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {-1+x}{x} \]
Mathematica. Time used: 13.317 (sec). Leaf size: 27
ode=D[y[x],{x,2}]==-2*x*D[y[x],x]^2; 
ic={y[1]==0,Derivative[1][y][1]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x-1}{x}\\ y(x)&\to \int _1^x\frac {1}{K[1]^2}dK[1] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 1} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Couldnt solve for initial conditions