67.9.3 problem 14.1 (c)

Internal problem ID [16551]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number : 14.1 (c)
Date solved : Friday, October 03, 2025 at 07:30:24 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }&=4 y \end{align*}
Maple. Time used: 0.041 (sec). Leaf size: 54
ode:=diff(diff(y(x),x),x)+x^2*diff(y(x),x) = 4*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {HeunT}\left (-4 \,3^{{2}/{3}}, -3, 0, \frac {3^{{2}/{3}} x}{3}\right ) {\mathrm e}^{-\frac {x^{3}}{3}} \left (\int \frac {{\mathrm e}^{\frac {x^{3}}{3}}}{\operatorname {HeunT}\left (-4 \,3^{{2}/{3}}, -3, 0, \frac {3^{{2}/{3}} x}{3}\right )^{2}}d x c_2 +c_1 \right ) \]
Mathematica. Time used: 0.035 (sec). Leaf size: 35
ode=D[y[x],{x,2}]+x^2*D[y[x],x]==4*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 e^{-\frac {x^3}{3}} \text {HeunT}[4,-2,0,0,-1,x]+c_1 \text {HeunT}[4,0,0,0,1,x] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - 4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False