Internal
problem
ID
[16556]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
14.
Higher
order
equations
and
the
reduction
of
order
method.
Additional
exercises
page
277
Problem
number
:
14.1
(h)
Date
solved
:
Thursday, October 02, 2025 at 01:36:27 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 2*diff(y(x),x)-5*y(x)+30*exp(3*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]==2*D[y[x],x]-5*y[x]+30*Exp[3*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(5*y(x) - 30*exp(3*x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)