67.9.31 problem 14.5 (a)

Internal problem ID [16579]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number : 14.5 (a)
Date solved : Thursday, October 02, 2025 at 01:36:35 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=diff(diff(diff(y(x),x),x),x)-9*diff(diff(y(x),x),x)+27*diff(y(x),x)-27*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{3 x} \left (c_3 \,x^{2}+c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 23
ode=D[y[x],{x,3}]-9*D[y[x],{x,2}]+27*D[y[x],x]-27*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{3 x} (x (c_3 x+c_2)+c_1) \end{align*}
Sympy. Time used: 0.101 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-27*y(x) + 27*Derivative(y(x), x) - 9*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + C_{3} x\right )\right ) e^{3 x} \]