Internal
problem
ID
[16582]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
14.
Higher
order
equations
and
the
reduction
of
order
method.
Additional
exercises
page
277
Problem
number
:
14.5
(d)
Date
solved
:
Thursday, October 02, 2025 at 01:36:36 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)-4*diff(diff(y(x),x),x)+10*diff(y(x),x)-12*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-4*D[y[x],{x,2}]+10*D[y[x],x]-12*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 12*y(x) + 10*Derivative(y(x), x) - 4*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x**3*Derivative(y(x), (x, 3))/10 - 6*y(x)/5 + Derivative(y(x), x) - 2*Derivative(y(x), (x, 2))/5 cannot be solved by the factorable group method