67.10.2 problem 15.2 (b)

Internal problem ID [16584]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 15. General solutions to Homogeneous linear differential equations. Additional exercises page 294
Problem number : 15.2 (b)
Date solved : Thursday, October 02, 2025 at 01:36:38 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=12 \\ \end{align*}
Maple. Time used: 0.048 (sec). Leaf size: 10
ode:=diff(diff(y(x),x),x)-4*y(x) = 0; 
ic:=[y(0) = 0, D(y)(0) = 12]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 6 \sinh \left (2 x \right ) \]
Mathematica. Time used: 0.009 (sec). Leaf size: 19
ode=D[y[x],{x,2}]-4*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==12}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 e^{-2 x} \left (e^{4 x}-1\right ) \end{align*}
Sympy. Time used: 0.046 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 12} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 3 e^{2 x} - 3 e^{- 2 x} \]