Internal
problem
ID
[16587]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
15.
General
solutions
to
Homogeneous
linear
differential
equations.
Additional
exercises
page
294
Problem
number
:
15.2
(e)
Date
solved
:
Thursday, October 02, 2025 at 01:36:40 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x) = 0; ic:=[y(1) = 0, D(y)(1) = 4]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0; ic={y[1]==0,Derivative[1][y][1]==4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 6*y(x),0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 4} dsolve(ode,func=y(x),ics=ics)