67.10.18 problem 15.7 (a)

Internal problem ID [16600]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 15. General solutions to Homogeneous linear differential equations. Additional exercises page 294
Problem number : 15.7 (a)
Date solved : Thursday, October 02, 2025 at 01:36:52 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-9 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=diff(diff(diff(y(x),x),x),x)-9*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{-3 x}+c_3 \,{\mathrm e}^{3 x} \]
Mathematica. Time used: 0.02 (sec). Leaf size: 30
ode=D[y[x],{x,3}]-9*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{3} c_1 e^{3 x}-\frac {1}{3} c_2 e^{-3 x}+c_3 \end{align*}
Sympy. Time used: 0.089 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-9*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- 3 x} + C_{3} e^{3 x} \]