67.11.18 problem 17.3 (f)

Internal problem ID [16619]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 17. Second order Homogeneous equations with constant coefficients. Additional exercises page 334
Problem number : 17.3 (f)
Date solved : Thursday, October 02, 2025 at 01:37:04 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=9*diff(diff(y(x),x),x)+12*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {2 x}{3}} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.01 (sec). Leaf size: 20
ode=9*D[y[x],{x,2}]+12*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x/3} (c_2 x+c_1) \end{align*}
Sympy. Time used: 0.086 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + 12*Derivative(y(x), x) + 9*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{- \frac {2 x}{3}} \]