Internal
problem
ID
[16619]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
17.
Second
order
Homogeneous
equations
with
constant
coefficients.
Additional
exercises
page
334
Problem
number
:
17.3
(f)
Date
solved
:
Thursday, October 02, 2025 at 01:37:04 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=9*diff(diff(y(x),x),x)+12*diff(y(x),x)+4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=9*D[y[x],{x,2}]+12*D[y[x],x]+4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) + 12*Derivative(y(x), x) + 9*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)