67.11.30 problem 17.5 (f)

Internal problem ID [16631]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 17. Second order Homogeneous equations with constant coefficients. Additional exercises page 334
Problem number : 17.5 (f)
Date solved : Thursday, October 02, 2025 at 01:37:11 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }+y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=4*diff(diff(y(x),x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\frac {x}{2}\right )+c_2 \cos \left (\frac {x}{2}\right ) \]
Mathematica. Time used: 0.009 (sec). Leaf size: 24
ode=4*D[y[x],{x,2}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos \left (\frac {x}{2}\right )+c_2 \sin \left (\frac {x}{2}\right ) \end{align*}
Sympy. Time used: 0.025 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\frac {x}{2} \right )} + C_{2} \cos {\left (\frac {x}{2} \right )} \]