Internal
problem
ID
[16637]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
17.
Second
order
Homogeneous
equations
with
constant
coefficients.
Additional
exercises
page
334
Problem
number
:
17.6
(f)
Date
solved
:
Thursday, October 02, 2025 at 01:37:17 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+13*y(x) = 0; ic:=[y(0) = 5, D(y)(0) = 31]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+13*y[x]==0; ic={y[0]==5,Derivative[1][y][0] ==31}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(13*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 5, Subs(Derivative(y(x), x), x, 0): 31} dsolve(ode,func=y(x),ics=ics)