67.11.36 problem 17.6 (f)

Internal problem ID [16637]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 17. Second order Homogeneous equations with constant coefficients. Additional exercises page 334
Problem number : 17.6 (f)
Date solved : Thursday, October 02, 2025 at 01:37:17 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=5 \\ y^{\prime }\left (0\right )&=31 \\ \end{align*}
Maple. Time used: 0.060 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+13*y(x) = 0; 
ic:=[y(0) = 5, D(y)(0) = 31]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} \left (7 \sin \left (3 x \right )+5 \cos \left (3 x \right )\right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 24
ode=D[y[x],{x,2}]-4*D[y[x],x]+13*y[x]==0; 
ic={y[0]==5,Derivative[1][y][0] ==31}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{2 x} (7 \sin (3 x)+5 \cos (3 x)) \end{align*}
Sympy. Time used: 0.110 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(13*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 5, Subs(Derivative(y(x), x), x, 0): 31} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (7 \sin {\left (3 x \right )} + 5 \cos {\left (3 x \right )}\right ) e^{2 x} \]