67.12.17 problem 19.4 (a)

Internal problem ID [16656]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 19. Arbitrary Homogeneous linear equations with constant coefficients. Additional exercises page 369
Problem number : 19.4 (a)
Date solved : Thursday, October 02, 2025 at 01:37:23 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-8 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 32
ode:=diff(diff(diff(y(x),x),x),x)-8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{3 x}+c_2 \sin \left (\sqrt {3}\, x \right )+c_3 \cos \left (\sqrt {3}\, x \right )\right ) {\mathrm e}^{-x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 42
ode=D[y[x],{x,3}]-8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (c_1 e^{3 x}+c_2 \cos \left (\sqrt {3} x\right )+c_3 \sin \left (\sqrt {3} x\right )\right ) \end{align*}
Sympy. Time used: 0.061 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*y(x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{2 x} + \left (C_{1} \sin {\left (\sqrt {3} x \right )} + C_{2} \cos {\left (\sqrt {3} x \right )}\right ) e^{- x} \]