Internal
problem
ID
[16698]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
21.
Nonhomogeneous
equations
in
general.
Additional
exercises
page
391
Problem
number
:
21.5
(i)
Date
solved
:
Thursday, October 02, 2025 at 01:37:50 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)+4*y(x) = 24*exp(2*x); ic:=[y(0) = 6, D(y)(0) = 6]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+4*y[x]==24*Exp[2*x]; ic={y[0]==6,Derivative[1][y][0] ==6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) - 24*exp(2*x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 6, Subs(Derivative(y(x), x), x, 0): 6} dsolve(ode,func=y(x),ics=ics)