67.15.6 problem 22.3 (a)

Internal problem ID [16724]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 22. Method of undetermined coefficients. Additional exercises page 412
Problem number : 22.3 (a)
Date solved : Thursday, October 02, 2025 at 01:38:12 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+9 y&=10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 29
ode:=diff(diff(y(x),x),x)+9*y(x) = 10*cos(2*x)+15*sin(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (3 x \right ) c_2 +\cos \left (3 x \right ) c_1 +2 \cos \left (2 x \right )+3 \sin \left (2 x \right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 32
ode=D[y[x],{x,2}]+9*y[x]==10*Cos[2*x]+15*Sin[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 \sin (2 x)+2 \cos (2 x)+c_1 \cos (3 x)+c_2 \sin (3 x) \end{align*}
Sympy. Time used: 0.044 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) - 15*sin(2*x) - 10*cos(2*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )} + 3 \sin {\left (2 x \right )} + 2 \cos {\left (2 x \right )} \]