Internal
problem
ID
[16745]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
22.
Method
of
undetermined
coefficients.
Additional
exercises
page
412
Problem
number
:
22.9
(e)
Date
solved
:
Thursday, October 02, 2025 at 01:38:26 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-6*diff(y(x),x)+9*y(x) = 10*exp(3*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-6*D[y[x],x]+9*y[x]==10*Exp[3*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x) - 10*exp(3*x) - 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)