Internal
problem
ID
[16756]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
22.
Method
of
undetermined
coefficients.
Additional
exercises
page
412
Problem
number
:
22.10
(k)
Date
solved
:
Thursday, October 02, 2025 at 01:38:32 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+5*y(x) = 10*x^2+4*x+8; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+5*y[x]==10*x^2+4*x+8; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-10*x**2 - 4*x + 5*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 8,0) ics = {} dsolve(ode,func=y(x),ics=ics)