Internal
problem
ID
[16776]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
22.
Method
of
undetermined
coefficients.
Additional
exercises
page
412
Problem
number
:
22.12
(c)
Date
solved
:
Thursday, October 02, 2025 at 01:38:45 PM
CAS
classification
:
[[_high_order, _missing_y]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-4*diff(diff(diff(y(x),x),x),x) = 32*exp(4*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-4*D[y[x],{x,3}]==32*Exp[4*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-32*exp(4*x) - 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)