Internal
problem
ID
[16795]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
22.
Method
of
undetermined
coefficients.
Additional
exercises
page
412
Problem
number
:
22.15
(d)
Date
solved
:
Thursday, October 02, 2025 at 01:38:59 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-2*y(x) = 15*cos(3*ln(x))-10*sin(3*ln(x)); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*y[x]==15*Cos[3*Log[x]]-10*Sin[3*Log[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*y(x) + 10*sin(3*log(x)) - 15*cos(3*log(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)