67.16.2 problem 24.1 (b)

Internal problem ID [16801]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 24. Variation of parameters. Additional exercises page 444
Problem number : 24.1 (b)
Date solved : Thursday, October 02, 2025 at 01:39:07 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 24
ode:=diff(diff(y(x),x),x)+y(x) = cot(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 +\sin \left (x \right ) \ln \left (\csc \left (x \right )-\cot \left (x \right )\right ) \]
Mathematica. Time used: 0.023 (sec). Leaf size: 48
ode=D[y[x],{x,2}]+y[x]==Cot[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (x) \int _1^x-\cos (K[1])dK[1]+\sin (x) \int _1^x\cos (K[2]) \cot (K[2])dK[2]+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.195 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), (x, 2)) - 1/tan(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \cos {\left (x \right )} + \left (C_{1} + \frac {\log {\left (\cos {\left (x \right )} - 1 \right )}}{2} - \frac {\log {\left (\cos {\left (x \right )} + 1 \right )}}{2}\right ) \sin {\left (x \right )} \]