Internal
problem
ID
[16818]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
24.
Variation
of
parameters.
Additional
exercises
page
444
Problem
number
:
24.4
(a)
Date
solved
:
Thursday, October 02, 2025 at 01:39:22 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)-3*x^2*diff(diff(y(x),x),x)+6*x*diff(y(x),x)-6*y(x) = exp(-x^2); dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-3*x^2*D[y[x],{x,2}]+6*x*D[y[x],x]-6*y[x]==Exp[-x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 3*x**2*Derivative(y(x), (x, 2)) + 6*x*Derivative(y(x), x) - 6*y(x) - exp(-x**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)