67.17.48 problem 48

Internal problem ID [16869]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 25. Review exercises for part III. page 447
Problem number : 48
Date solved : Thursday, October 02, 2025 at 01:39:57 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} y^{\left (6\right )}-64 y&={\mathrm e}^{-2 x} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 60
ode:=diff(diff(diff(diff(diff(diff(y(x),x),x),x),x),x),x)-64*y(x) = exp(-2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {{\mathrm e}^{-2 x} \left (-192 \left ({\mathrm e}^{3 x} c_3 +c_5 \,{\mathrm e}^{x}\right ) \cos \left (\sqrt {3}\, x \right )-192 \left ({\mathrm e}^{3 x} c_4 +c_6 \,{\mathrm e}^{x}\right ) \sin \left (\sqrt {3}\, x \right )-192 c_2 \,{\mathrm e}^{4 x}+x -192 c_1 \right )}{192} \]
Mathematica. Time used: 0.558 (sec). Leaf size: 324
ode=D[y[x],{x,6}]-64*y[x]==Exp[-2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x \cos \left (\sqrt {3} x\right ) \int _1^x\frac {1}{192} e^{-3 K[1]} \left (\cos \left (\sqrt {3} K[1]\right )+\sqrt {3} \sin \left (\sqrt {3} K[1]\right )\right )dK[1]+e^{-x} \cos \left (\sqrt {3} x\right ) \int _1^x\frac {1}{192} e^{-K[2]} \left (\sqrt {3} \sin \left (\sqrt {3} K[2]\right )-\cos \left (\sqrt {3} K[2]\right )\right )dK[2]+e^{-x} \sin \left (\sqrt {3} x\right ) \int _1^x-\frac {1}{192} e^{-K[3]} \left (\sqrt {3} \cos \left (\sqrt {3} K[3]\right )+\sin \left (\sqrt {3} K[3]\right )\right )dK[3]+e^x \sin \left (\sqrt {3} x\right ) \int _1^x\frac {1}{192} e^{-3 K[4]} \left (\sin \left (\sqrt {3} K[4]\right )-\sqrt {3} \cos \left (\sqrt {3} K[4]\right )\right )dK[4]-\frac {1}{192} e^{-2 x} x-\frac {e^{-2 x}}{768}+c_1 e^{2 x}+c_4 e^{-2 x}+c_2 e^x \cos \left (\sqrt {3} x\right )+c_3 e^{-x} \cos \left (\sqrt {3} x\right )+c_5 e^{-x} \sin \left (\sqrt {3} x\right )+c_6 e^x \sin \left (\sqrt {3} x\right ) \end{align*}
Sympy. Time used: 0.169 (sec). Leaf size: 66
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-64*y(x) + Derivative(y(x), (x, 6)) - exp(-2*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{6} e^{2 x} + \left (C_{1} - \frac {x}{192}\right ) e^{- 2 x} + \left (C_{2} \sin {\left (\sqrt {3} x \right )} + C_{3} \cos {\left (\sqrt {3} x \right )}\right ) e^{- x} + \left (C_{4} \sin {\left (\sqrt {3} x \right )} + C_{5} \cos {\left (\sqrt {3} x \right )}\right ) e^{x} \]