Internal
problem
ID
[16874]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
27.
Differentiation
and
the
Laplace
transform.
Additional
Exercises.
page
496
Problem
number
:
27.1
(c)
Date
solved
:
Thursday, October 02, 2025 at 01:40:01 PM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)+3*y(t) = Heaviside(t-4); ic:=[y(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],t]+3*y[t]==UnitStep[t-4]; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(3*y(t) - Heaviside(t - 4) + Derivative(y(t), t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)