Internal
problem
ID
[16885]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
27.
Differentiation
and
the
Laplace
transform.
Additional
Exercises.
page
496
Problem
number
:
27.4
Date
solved
:
Thursday, October 02, 2025 at 01:40:07 PM
CAS
classification
:
[_Lienard]
Using Laplace method With initial conditions
ode:=t*diff(diff(y(t),t),t)+diff(y(t),t)+t*y(t) = 0; ic:=[y(0) = 1, D(y)(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=t*D[y[t],{t,2}]+D[y[t],t]+t*y[t]==0; ic={y[0]==1,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*y(t) + t*Derivative(y(t), (t, 2)) + Derivative(y(t), t),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)