Internal
problem
ID
[16920]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
31.
Delta
Functions.
Additional
Exercises.
page
572
Problem
number
:
31.6
(f)
Date
solved
:
Thursday, October 02, 2025 at 01:40:22 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method
ode:=diff(diff(y(t),t),t)+y(t) = Dirac(t)+Dirac(t-Pi); dsolve(ode,y(t),method='laplace');
ode=D[y[t],{t,2}]+2*y[t]==DiracDelta[t]+DiracDelta[t-Pi]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Dirac(t) - Dirac(t - pi) + y(t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)