Internal
problem
ID
[16963]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
33.
Power
series
solutions
I:
Basic
computational
methods.
Additional
Exercises.
page
641
Problem
number
:
33.11
(d)
Date
solved
:
Thursday, October 02, 2025 at 01:40:43 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=4; ode:=sin(x)*diff(diff(y(x),x),x)-y(x) = 0; dsolve(ode,y(x),type='series',x=1/2*Pi);
ode=Sin[x]*D[y[x],{x,2}]-y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,Pi/2,3}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x) + sin(x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=pi/2,n=4)