67.24.2 problem 34.5 (b)

Internal problem ID [16969]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 34. Power series solutions II: Generalization and theory. Additional Exercises. page 678
Problem number : 34.5 (b)
Date solved : Thursday, October 02, 2025 at 01:40:46 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }-y \tan \left (x \right )&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.026 (sec). Leaf size: 24
Order:=6; 
ode:=diff(y(x),x)-tan(x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{2} x^{2}+\frac {5}{24} x^{4}\right ) y \left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 22
ode=D[y[x],x]-Tan[x]*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {5 x^4}{24}+\frac {x^2}{2}+1\right ) \]
Sympy. Time used: 1.370 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)*tan(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{1} x^{2}}{2} + \frac {5 C_{1} x^{4}}{24} + O\left (x^{6}\right ) \]