67.24.12 problem 34.6 (b)

Internal problem ID [16979]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 34. Power series solutions II: Generalization and theory. Additional Exercises. page 678
Problem number : 34.6 (b)
Date solved : Thursday, October 02, 2025 at 01:41:27 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }+{\mathrm e}^{2 x} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 37
Order:=6; 
ode:=diff(y(x),x)+exp(2*x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-x -\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {3}{8} x^{4}+\frac {23}{120} x^{5}\right ) y \left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 39
ode=D[y[x],x]+Exp[2*x]*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {23 x^5}{120}+\frac {3 x^4}{8}+\frac {x^3}{6}-\frac {x^2}{2}-x+1\right ) \]
Sympy. Time used: 0.196 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*exp(2*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} - C_{1} x - \frac {C_{1} x^{2}}{2} + \frac {C_{1} x^{3}}{6} + \frac {3 C_{1} x^{4}}{8} + \frac {23 C_{1} x^{5}}{120} + O\left (x^{6}\right ) \]