Internal
problem
ID
[16989]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
34.
Power
series
solutions
II:
Generalization
and
theory.
Additional
Exercises.
page
678
Problem
number
:
34.8
b(ii)
Date
solved
:
Thursday, October 02, 2025 at 01:41:34 PM
CAS
classification
:
[_separable]
Using series method with expansion around
Order:=8; ode:=diff(y(x),x)+(x^2+1)^(1/2)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],x]+Sqrt[1+x^2]*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(sqrt(x**2 + 1)*y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=8)