Internal
problem
ID
[16995]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
34.
Power
series
solutions
II:
Generalization
and
theory.
Additional
Exercises.
page
678
Problem
number
:
34.9
b(iv)
Date
solved
:
Thursday, October 02, 2025 at 01:41:39 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=5; ode:=x^(1/2)*diff(diff(y(x),x),x)+diff(y(x),x)+x*y(x) = 0; dsolve(ode,y(x),type='series',x=1);
ode=Sqrt[x]*D[y[x],{x,2}]+D[y[x],x]+x*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,4}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(sqrt(x)*Derivative(y(x), (x, 2)) + x*y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=1,n=5)