67.25.4 problem 35.2 (d)

Internal problem ID [16999]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 35. Modified Power series solutions and basic method of Frobenius. Additional Exercises. page 715
Problem number : 35.2 (d)
Date solved : Thursday, October 02, 2025 at 01:41:41 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} \left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime }&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 36
Order:=6; 
ode:=(x+2)^2*diff(diff(y(x),x),x)+(x+2)*diff(y(x),x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = y \left (0\right )+\left (x -\frac {1}{4} x^{2}+\frac {1}{12} x^{3}-\frac {1}{32} x^{4}+\frac {1}{80} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 39
ode=(x+2)^2*D[y[x],{x,2}]+(x+2)*D[y[x],x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{80}-\frac {x^4}{32}+\frac {x^3}{12}-\frac {x^2}{4}+x\right )+c_1 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x + 2)**2*Derivative(y(x), (x, 2)) + (x + 2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
IndexError : list index out of range