Internal
problem
ID
[17004]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
35.
Modified
Power
series
solutions
and
basic
method
of
Frobenius.
Additional
Exercises.
page
715
Problem
number
:
35.3
(c)
Date
solved
:
Thursday, October 02, 2025 at 01:41:44 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(-x^4+x^3)*diff(diff(y(x),x),x)+(3*x-1)*diff(y(x),x)+827*y(x) = 0; dsolve(ode,y(x),type='series',x=1);
ode=(x^3-x^4)*D[y[x],{x,2}]+(3*x-1)*D[y[x],x]+827*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x - 1)*Derivative(y(x), x) + (-x**4 + x**3)*Derivative(y(x), (x, 2)) + 827*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=1,n=6)