67.25.11 problem 35.3 (e)

Internal problem ID [17006]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 35. Modified Power series solutions and basic method of Frobenius. Additional Exercises. page 715
Problem number : 35.3 (e)
Date solved : Thursday, October 02, 2025 at 01:41:46 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 4 \end{align*}
Maple. Time used: 0.019 (sec). Leaf size: 250
Order:=6; 
ode:=diff(diff(y(x),x),x)+1/(x-3)^2*diff(y(x),x)+1/(x-4)^2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=4);
 
\[ y = \sqrt {x -4}\, \left (c_2 \left (x -4\right )^{\frac {i \sqrt {3}}{2}} \left (1-\frac {1}{2} \left (x -4\right )+\frac {5 i \sqrt {3}+7}{8 i \sqrt {3}+16} \left (x -4\right )^{2}-\frac {1}{12} \frac {5+36 i \sqrt {3}}{\left (i \sqrt {3}+3\right ) \left (i \sqrt {3}+2\right )} \left (x -4\right )^{3}+\frac {1}{96} \frac {1313 i \sqrt {3}-865}{\left (i \sqrt {3}+4\right ) \left (i \sqrt {3}+3\right ) \left (i \sqrt {3}+2\right )} \left (x -4\right )^{4}+\frac {1}{480} \frac {15978 \sqrt {3}+23995 i}{\left (i \sqrt {3}+4\right ) \left (-\frac {\sqrt {3}}{2}+i\right ) \left (i \sqrt {3}+5\right ) \left (i \sqrt {3}+3\right )} \left (x -4\right )^{5}+\operatorname {O}\left (\left (x -4\right )^{6}\right )\right )+c_1 \left (x -4\right )^{-\frac {i \sqrt {3}}{2}} \left (1-\frac {1}{2} \left (x -4\right )+\frac {5 \sqrt {3}+7 i}{8 \sqrt {3}+16 i} \left (x -4\right )^{2}+\frac {5-36 i \sqrt {3}}{-36+60 i \sqrt {3}} \left (x -4\right )^{3}+\frac {-1313 \sqrt {3}+865 i}{288 i-2208 \sqrt {3}} \left (x -4\right )^{4}+\frac {-15978 i \sqrt {3}-23995}{26880 i \sqrt {3}+20160} \left (x -4\right )^{5}+\operatorname {O}\left (\left (x -4\right )^{6}\right )\right )\right ) \]
Mathematica. Time used: 0.008 (sec). Leaf size: 2225
ode=D[y[x],{x,2}]+1/(x-3)^2*D[y[x],x]+1/(x-4)^2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,4,5}]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2)) + Derivative(y(x), x)/(x - 3)**2 + y(x)/(x - 4)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=4,n=6)
 
ValueError : Expected Expr or iterable but got None