Internal
problem
ID
[17008]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
35.
Modified
Power
series
solutions
and
basic
method
of
Frobenius.
Additional
Exercises.
page
715
Problem
number
:
35.3
(g)
Date
solved
:
Thursday, October 02, 2025 at 01:41:48 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(4*x^2-1)*diff(diff(y(x),x),x)+(4-2/x)*diff(y(x),x)+(-x^2+1)/(x^2+1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(4*x^2-1)*D[y[x],{x,2}]+(4-2/x)*D[y[x],x]+(1-x^2)/(1+x^2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 - x**2)*y(x)/(x**2 + 1) + (4 - 2/x)*Derivative(y(x), x) + (4*x**2 - 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)