Internal
problem
ID
[17037]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
36.
The
big
theorem
on
the
the
Frobenius
method.
Additional
Exercises.
page
739
Problem
number
:
36.2
(j)
Date
solved
:
Thursday, October 02, 2025 at 01:42:12 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x*diff(diff(y(x),x),x)+4*diff(y(x),x)+12/(x+2)^2*y(x) = 0; dsolve(ode,y(x),type='series',x=-2);
ode=x*D[y[x],{x,2}]+4*D[y[x],x]+12/(x+2)^2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-2,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) + 4*Derivative(y(x), x) + 12*y(x)/(x + 2)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=-2,n=6)