Internal
problem
ID
[17042]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
36.
The
big
theorem
on
the
the
Frobenius
method.
Additional
Exercises.
page
739
Problem
number
:
36.6
(c)
Date
solved
:
Thursday, October 02, 2025 at 01:42:15 PM
CAS
classification
:
[_Laguerre]
Using series method with expansion around
Order:=6; ode:=x^2*diff(diff(y(x),x),x)-(x^2+x)*diff(y(x),x)+4*x*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]-(x+x^2)*D[y[x],x]+4*x*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 4*x*y(x) - (x**2 + x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)