Internal
problem
ID
[17058]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
38.
Systems
of
differential
equations.
A
starting
point.
Additional
Exercises.
page
786
Problem
number
:
38.10
(i)
Date
solved
:
Thursday, October 02, 2025 at 01:42:25 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 4*x(t)+3*y(t)-6*exp(3*t), diff(y(t),t) = x(t)+6*y(t)+2*exp(3*t)]; ic:=[x(0) = 4, y(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==4*x[t]+3*y[t]+6*Exp[3*t],D[y[t],t]==x[t]+6*y[t]+2*Exp[3*t]}; ic={x[0]==4,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-4*x(t) - 3*y(t) + 6*exp(3*t) + Derivative(x(t), t),0),Eq(-x(t) - 6*y(t) - 2*exp(3*t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)